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We have developed an implicit Monte Carlo technique for describing time-dependent line 
transport in the presence of collisional coupling bctwccn atomic levels. The method is applied 
to the time-dependent description of a two-lcvcl system in plane parallel slab geometry. For a 
set of test problems the stability of the scheme is independent of the choice of time-step, 
indicating the robustness of the method. The method is shown to be applicable to both 
optically thin and opticaly thick media, (: I’M6 Academic Prcsr. Inc 

1. INTRODUCTJOI\; 

The transport of radiation from resonance lines is important in the study of 
stellar atmospheres [ 1 ] and laser produced plasmas [2]. The trapping of resonance 
radiation in vapors is important in a variety of experimental situations, although it 
is frequently regarded as an unwanted complication. This phenomenon has been 
studied both theoretically [3 51 and experimentally. The experiments may be 
regarded as either steady state [6, 71 or time dependent [g]. 

Most of the methods devised thus far for computing line transport have been 
restricted to steady state applications. (See [l] and the references therein.) 
Linearized treatments of two-level time-dependent line transport have been 
developed by Kunasz [9] and Alley [lo]. To our knowledge, however, no method 
applicable to nonlinear time-dependent line transport with collisions has yet been 
published. In this paper we describe a Monte Carlo method for solving such 
problems for two-level systems, which is capable of generalization to more levels. 
The generalization to more levels will be treated in a later publication. 

The Monte Carlo method has several advantages over the more conventional dis- 
crete ordinate methods. In multidimensional geometry, where the need for adequate 
sampling in frequency, direction, and space becomes particularly onerous for dis- 
crctc ordinate methods, the Monte Carlo method has a distinct advantage. Com- 
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plex scattering effects such as partial frequency redistribution are also handled with 
greater ease using Monte Carlo [ 11, 123. 

The main defect of the Monte Carlo method is the statistical variation in the 
estimate of the radiation intensity. On the other hand the level of fluctuation of 
atomic state populations can be quite acceptable, since these depend on integrals 
over the radiation field and are consequently smoother than the radiation intensity 
itself. 

The basic difficulty underlying the numerical solution of the coupled time-depen- 
dent level population and radiative transfer equations is that they constitute a stiff 
system. Thus the time differencing scheme must be implicit in all of the dependent 
variables to ensure stability. When this is accomplished, time integration steps can 
be selected on the basis of acceptable changes per step in the physical variables 
rather than on stability conditions. 

An implicit Monte Carlo method was developed earlier for solving the time 
dependent radiation transport and material energy equations under LTE con- 
ditions [13, 141. The basic step in the derivation of the method is to write the 
material energy conservation equation as an implicit difference equation. With this 
equation one can express the source term in terms of an integral of the specific 
intensity over direction and frequency. Substitution of the source term in this form 
into the radiation transport equation is formally equivalent to the introduction of a 
scattering process representing the absorption and reemission of radiation. The 
remaining absorption coefficient and the scattering coefficient for the new process 
together add up to the absorption coefficient in the original transport equation. The 
larger the integration time-step and/or the local Planck mean absorption coefficient, 
the larger the contribution of scattering. The implicit Monte Carlo method has been 
empirically demonstrated to be unconditionally stable for certain simple equation of 
state and opacity models [13]. 

The problem of two-level line transport can be treated analogously. One writes 
the rate equation for the upper level, including both collisions and radiative transi- 
tions as an implicit difference equation. This equation can be used to express the 
spontaneous emission source in the radiation transport equation in terms of an 
integral of the radiation field over direction and frequency. As in the LTE case the 
presence of this integral in the source term corresponds to a scattering process. The 
original absorption coefficient is divided into absorption and scattering con- 
tributions with the scattering contribution becoming more important as the time 
integration step increases. 

In this paper we shall consider for simplicity slab geometry and complete fre- 
quency redistribution in the scattering, since our primary interest is in 
demonstrating the stability and accuracy of the implicit Monte Carlo scheme for 
line transport applications. Generalization to more complex geometries and scatter- 
ing models is straightforward. 

The outline of the paper is as follows. In Section 2 we derive the basic equations 
used in the method. The derivation of the atomic population equations and the 
transfer equation, which includes effective scattering terms, closely parallels the 
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derivation for the LTE case [ 133. In Section 3 we describe the Monte Carlo 
procedure used to solve the equations derived in Section 2. Numerical results are 
described in Sections 4 and 5. Computation times are discussed in Section 6, and 
conclusions are contained in Section 7. 

2. Tm MATHEMATICAL METHOD 

The radiation transport equation for a two-level system in slab geometry is 

(2.1) 

where c is the speed of light, x is the position in the slab, p is the direction cosine of 
the radiation, v is the frequency of the radiation, j’(p, V, s, t) is the photon number 
density distribution per unit atom density, nz(x, I) is the upper level population 
fraction, n,(x, t) is the lower level population fraction, A,, is the spontaneous 
emission rate, d(v) is the normalized line shape function for absorption and 
K,2 = UN, where K is the lower state absorption cross section and N is the atom 
number density. The coefficient K,, is defined by 

K ,fiK 21 
g2 12’ 

(2.2) 

where g, and gZ are the usual statistical weight factors for levels 1 and 2. 
The equations governing the atomic population fractions n, and tz2 are 

dn2 
dt=C,~n,-C,,n,-Az,n,+c*(K,,n,-Kz,nZ) 1’ dp [’ cfv &v)f(p, v) (3.3) 

d I *0 

and 
n, +n,= I, (2.4) 

where C,? and c’,, are rate contants for the collisional transitions 1 + 2 and 2 -+ 1. 
respectively. 

Using (2.4) one can rewrite (2.1) and (2.3) as 

~+~~.~=~A,,&-c[K,,-(K,, +K,?)n] 41 (2.5) 

and 

~=C,~-(C,2+C~,+A~,)~z+~*[K,2-(K2,+K,2)n]~~,~~~~‘(I~~(v)/.(p,~). 

(2.6) 

respectively, where n is the upper level population fraction. 
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We now turn to creating a scheme for solving these equations numerically. 
Following the implicit Monte Carlo technique as described in [13], we derive a 
finite difference solution for (2.6) using semiimplicit differencing. To generate a 
prescription for obtaining n(t, + At,) from n(to) we integrate (2.6) from t, to 
t, + At,. If we approximate n(t) by n( t, + At,) in the spontaneous emission and 
collision terms and n(to) in the absorption term, we obtain 

+ cCKI, - (&I + K,,) n(b)1 j-to+d’n dt j-l1 & jam dvc4v)fh v, t). 
r0 

(2.7) 

Note that we have treated the term involving time constants implicitly and the net 
absorption term explicitly. Implicit time centering has been used on the terms most 
likely to affect stability. Use of explicit time centering for the net absorption term is 
unlikely to affect stability and also brings about great simplification. Solving (2.7) 
for n( to + At,) gives 

4to + AL) = dto) + d&C,, + ycCK,,- (Kx + K,,) n(h)1 

(2.8) 

where y is defined by 

1 
’ = 1 + At,(C,, + CI1 + A,,) 

‘. (2.9) 

Equation (2.8) gives us a prescription for finding n(t, + At,) given n( to) and the 
history of the radiation field over the time interval. 

We now need a transport equation for the radiation field between the times t, 
and to + At, which is consistent with (2.8). To derive this equation we consider a 
finite difference solution for f( t) between the times to and to + At, with a possibly 
smaller step size Atf. We denote the sequence of time-steps between t, and t, + At,, 
by ti. Integrating (2.5) from ti to ti+ At, and for simplicity dropping the a/ax term 
which is not germane to this discussion, we obtain 

&+AtJ=f(tJ+y j~i+dlidtn(t)+~~jii+dzfdt[(K,,+K,,)n(t)-K,,]f(t). 
r8 fi 

(2.10) 

Now we must choose the approximations which we will use for n(t) and f(t) 
in the time integrals. If Atf were equal to At,, then consistency with the implicit 
differencing of (2.7) would demand that we substitute n(t, + At,) for n(t) in the 
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spontaneous emission term and n(t,,) for n(f) in the absorption term. Making use of 
these substitutions and (2.8) we obtain for (2.10) the form 

If At,< At, the substitution of n(t,, + At,) for n(r) requires knowledge of .f‘( t) for 
times exceeding ti+ At,- to compute f(ti + At,). To avoid this problem we 
approximate the time integral over T by At,,f(p, v, t). Equation (2.11) gives us a 
prescription for computingf(t) in the interval from t, to t,, + At,. Taking the !imit 
Al,.+ 0, we obtain a differential equation for .f(t) between the time steps of the 
solution for n(t). If we now include the spatial derivatives which were dropped for 
the above discussion, we obtain 

CK,, - (K,, + K,,) dh)l 

(2.12) 

Equation (2.12) can also be justilied in the following way. Consider the 
diffcrencing of (2.5) and (2.6) with respect to time in which the dependent variables 
are all implicit with the exception of n(t) in the absorption terms, which is left 
explicit. The resulting difference equations can be combined to give a single 
difference equation that involves only the radiation distributon. This difference 
equation will be identical to the one obtained by diffcrencing (2.12) with respect to 
time and keeping the radiation distribution implicit. Thus a Monte Carlo solution 
of (2.12) should be consistent with the solution to the implicit finite difference 
approximations of (2.5) and (2.6). 

Examination of (2.12) shows that the net absorption coefficient 

4v)=d(v)CK,2- (K2, + Kl2) 44,)l (2.13) 

is now divided into an absorption contribution 

a,(v) =fi(v) (2.14) 

and a scattering contribution 

a,(v)=(l -f),(v), (2.15) 

%l,67:1-5 
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where the fraction % is given by 

p= 1+ &(Cl, + Gl) 
1+AL(cl2+Gl+&)’ 

(2.16) 

Note also that the nonscattering source term in (2.12) contains a contribution 
that depends on the collision coefficient Cl2 and approaches zero with dt, . It is 
also seen that the contribution of the nonscattering source term relative to the scat- 
tering source term decreases as dt, increases. The transport equation derived for the 
LTE version of the implicit Monte Carlo method displays similar properties [ 131. 

Equation (2.12) gives a complete description of the radiation field in the time 
interval t, to to + dt,. The change in the atomic level populations can be deter- 
mined using the principle that every photon absorbed results in the destruction of 
one lower state atom and the production of one upper state atom. 

Integration of both sides of (2.12) over direction and frequency gives 

dvf(pL, v, x, t) + g 

= yA,,(n(to) +&Cl,) - j-1, d, jam dvco,(v)fbL, v, x, t) 

where F is the photon flux per unit atom density, and nP is the photon density per 
unit atom. Integrating (2.17) over the duration of the integration cycle gives the 
following equation for the net change in the photon density per unit atom 

dn, = yA,,(n(t,) + At,C,,) At, -j-l, dp Iom dv j-;+Afn dtco,(v)f(p, v, x, f) (2.18) 

which is the difference between the photon weight per unit atom added by the sour- 
ces and the total photon weight per unit atom absorbed. In the absence of collisions 
An, could be taken as the negative of the change in the upper state population frac- 
tion, but in the presence of collisions, the upper state population must be updated 
with the help of (2.8). 

3. THE MONTECARLO PROCEDURE 

The Monte Carlo procedure for solving the coupled transport and atomic level 
population rate equations follows closely the procedure already developed for LTE 
problems. For explicit details regarding generation of source particles, geometry, 
and particle tracking the reader is referred to [13]. A brief summary of the 
procedure for line transport is given here. 
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Space is divided into fixed or variable width zones of width Ax. Atomic level pop- 
ulations are assumed to be constant over each zone. Photon sources are created in 
each zone with strength determined by the level population fraction n(to) and the 
first right hand term in (2.12). Source photon bundles or particles arc generated 
during each integration cycle and in each zone with weights appropriate to the 
source strength and the number of particles assigned to the zone. All photons arc 
generated independently and are characterized by a position x within the zone, a 
time I within the integration cycle, and a randomly distributed direction cosine p. A 
frequency is assigned on the basis of the normalized line shape distribution 4(v). 

Photon bundles are followed to collision, boundary crossing, or census, 
whichever is appropriate. The direction and frequency of a particle are reassigned 
following each collision. Over each segment of path the photon weight is cxponen- 
tially attenuated. At census the accumulated weight lost from the radiation bundles 
in each zone is used to raise atoms from the lower to the upper state in that zone in 
accordance with (2.8). Photon bundles that arc reduced to an arbitrary fraction of 
their initial weight as well as those that exit from the system arc terminated. Photon 
bundles that reach census are stored to bc transported during the following cycle. 

The frequent occurrence of scattering events makes it essential to pick frequencies 
from the line shape distribution 4(v) efficiently. The following scheme was designed 
to achieve this end. 

The line shape profile of greatest interest and the one that we have considered is 
rhe Voight profile [I]. which has been normalized to unity, 

Since this distribution is a symmetric function of Y$ we need only consider positive 
values of Y. Integrating (3.1) over v from 0 to .x, we obtain the following expression 
for the cumulative distribution function on the half interval (0, 3;): 

(3.2) 

On the interval (0, x8) N frequency bins, delimited by 1’ = 0, \:, , v2 ,.... iv,, , , .x 
are determined by numerical integration such that the values of F(a, v) occur in 
equal increments of l/N. When it is necessary to select a frequency from the dis- 
tribution (3.1), one of the N intervals defined by the frequencies above is selected by 
taking the integer part of Nr, where r is a random number distributed uniformly on 
the interval (0, 1). The cross section for a photon bundle in the frcqucncy interval 
(I’,> v,-+ I ) is set equal to the average of the appropriate cross section on the interval 
evaluated using (3.1) and (2.15). If the interval (\I,~ , , x ) is selected, the photon 
cross-section is set to zero and the photon bundle is allowed to escape from the 
system. 

The above procedure is equivalent to representing the distribution (3.1) as a 
histogram. In Fig. 1 and 2 we show a Voigt profile and its histogram approximation 
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Frequency 

FIG. 1. Voigt profile for a = 0.1 and its 80 group histogram approximation. 

for N = 80 and N = 640, respectively. With 640 frequency groups the Voigt profile is 
accurately represented even in the wing of the profile. Clearly the efficiency of the 
calculation, provided the initial investment of locating the frequencies vr, v~,..., 
vN- 1 can be neglected, is independent of the number of requency intervals, and the 
latter should be influenced only by the available storage. 

4. EVOLUTION OF A SIMPLE TWO-LEVEL SYSTEM TO A STEADY STATE 

Since we know of no other method for solving the complete time-dependent line 
transport problem with collisions, we found it necessary to test the implicit Mon- 
te Carlo technique by comparing the steady-state solution reached asymptotically in 
a time-dependent calculation with the steady-state solution generated by a time- 
independent method [15]. We are indebted to W. E. Alley for providing the results 
obtained with this method [16]. 

Frequency 

FIG. 2. Voigt profile for a = 0.1 and its 640 group histogram approximation. 
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TABLE I 

The Physical Problem Parameters for Section 4 
.-~ --.- 

0.25 
0.0 

15.3422 
15.3422 
3.33564 
0.245423 
0.667 I28 
0.0 
0.2 

Consider a slab of finite width open to a vacuum on both ends. Initially the 
upper level population fraction, n, is a constant function of position, and no 
photons arc present. The system is pumped by collisions and evolves to a nontrivial 
steady-state. The parameters for the problem are given in Table I. Here time is 
measured in units of the time required for light to traverse the slab. A total of 640 
frequency intervals were used to represent the line shape profile. About 1500 were 
used in the time-independent calculation [16]. 

The solution to (2.12) and (2.8) provides the radiation lield and level populations 
as a function of position. Steady-state methods such as those described in [ 151, on 
the other hand, specify the solution as a function of optical depth. For this reason it 
was necessary to generate the implicit Monte Carlo solution first and then to map 
position onto optical depth. The two steady-state profiles of the upper level pop- 
ulation fraction, plotted as a function of optical depth for the right half of the slab, 
are displayed in Fig. 3. The Monte Carlo values are generated at zone centers, and 
the steady-state calculation values are determined at zone boundaries. To minimize 
the effect of statistical fluctuations the Monte Carlo values of population fraction 

b i i i 4 i 
Optical depth 

FIG. 3. Comparison of steady-state upper level population fraction calculated by implicit Monte 
Carlo and the steady-state method in [15]. 
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0 At = 1 

0 At = 0.1 

At = 0.01 

I 1 I 
1 2 3 4 5 

Time 

FIG. 4. Slab optical thickness as a function of time for different values of the integration time-step At. 

were averaged over time from t = 10 to t =20. The agreement between the two 
forms of calculation is seen to be excellent. 

The approach of the system to steady state is shown in Fig. 4. Here the optical 
thickness of the slab as a function of time is plotted for three different choices of the 
time-step At. It is seen that regardless of time-step size the system reaches the 
correct asymptotic time behavior, indicating that the implicit Monte Carlo 
algorithm is stable for any choice of time-step. 

Monte Carlo calculations were carried out for the parameter values in Table I 
and different numbers of frequency groups in the line. The convergence of the time- 
averaged slab optical thickness as a function of the number of frequency groups is 
indicated in Table II. Once we exceed 640 frequency groups the statistical error in 
the data masks the accuracy improvement coming from better frequency resolution. 
The particle population reached a steady-state number of approximately 50,000 
particles. This rather large number is justified, however, by the accuracy implied in 
the values in Table II. 

In Table III and Fig. 5 we show the sensitivity of the Monte Carlo steady state 
optical thickness and upper level population fraction to zone size. The convergence 

TABLE II 

Convergence as the Number of Frequency Groups Is Increased 

N groups Optical thickness 

10 10.4967 
20 10.1941 
40 10.0759 
80 10.0247 

160 10.005 1 
320 10.0032 
640 io.0004 

1280 10.0027 
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TABLE III 

Convergence as the Number of Zones Is Increased 

N zones Optical thickness 

2 10.0523 
4 10.0281 
8 9.9943 

16 !0.0061 
32 9.9887 
64 lQ.0011 

as the number of zones is increased is very rapid with statistical errors dominating 
once we have 8 zones or more. In Fig. 5 one can see the statistical fluctuations 
increasing as the number of zones is increased. As the number of particles in the 
slab was held fixed, the number of particles per zone decreases as the number of 
zones is increased. This causes the statistical errors in zonal quantities to increase 
with the number of zones. 

5. TIME-DEPENIXNT RADIATION TRAPPING 

We turn next to the description of the time-dependent diffusion of upper level 
excitation, which occurs, for example, following the irradiation of a gas by a pulsed 

0 1 2 3 4 5 

Optical depth 

FIG. 5. Steady-state upper level population fraction calculated by implicit Monte Carlo for various 
zone sizes. 
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TABLE IV 

The Physical Problem Parameters for Fig. 6 

n(x, t = 0) 0.25exp( -x2/.02) 
f(w v, 4 t = 0) 0.0 

K2, 15.3422 
K12 15.3422 

A21 3.3356 
Cl2 0.0024 
c2, 0.0067 
a 0.0 
At l/A,, 

laser beam [8]. Consider again a slab open at both ends with a Gaussian initial 
excited state population distribution. The parameters for the first problem are given 
in Table IV. The slab is approximately 15 optical depths in thickness. 

In Fig. 6 we show the upper level population fraction as a function of distance 
from the center of the slab for the first 10 integration time-steps. The zoning is the 
same as for Fig. 3. In the absence of trapping and collisional pumping the excitation 
should everywhere drop to I:e of its previous value after each integration step. The 
population actually drops less than 45% following the first time-step due to 
radiation trapping. In the last few time-steps the approach to the steady-state dis- 
tribution established by collisions is evident. 

In Fig. 7 we show the evolution in time of the same population distribution for 
the same slab size and the parameters in Table V. In this case the slab contains 
approximately 1200 optical depths. In Fig. 7 the upper state population fraction is 
plotted in increments of 10 integration steps. Due to the severity of the radiation 
trapping it takes approximately 80 spontaneous emission lifetimes for the pop- 
ulation fraction at the center of the slab to decay to 50% of its starting value. 

Position in slab 

FIG. 6. Time-dependent diffusion of upper level population fraction as a function of time for a slab 
15 optical depths in thickness. 
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TABLE V 

The Physical Problem Parameters for Fig. 7 

n(x. 1 = 0) 
f(p. v, .r, I = 0) 

K*, 
K!l 
A21 
Cl2 
c‘z, 
(1 

A/ 

0.25cxp( .X?!.O2) 
0.0 

1885.0 
628.33 

.O ! 65 
1o-fi 
IO x 
0.03 I 
I/A,, 

6. PROBLEM RUTWNG TIMES 

The program was coded for a VAX 11,‘780 in the C programming language. 
Optically thin problems ran typically for about an hour, whereas optically thick 
problems ran for approximately 30 h. This would translate, roughly, to a fraction of 
a minute and 20 min. of equivalent Cray 1 running time. It should be emphasised, 
however, that no attempt was made to optimize the efficiency of the calculation 
through particle number control or other methods, since our primary interest was 
in demonstrating the stability and accuracy of the underlying method. 

The use of random walk methods similar to those employed in the LTF: 
application of implicit Monte Carlo [ 143 could be expected to greatly improve the 
cfftcicncy of the calculation in zones of high opacity. On the other hand, for 
problems that involve large numbers of scatters, the addition of extra dimensions 
would not be expected to add greatly to the problem running time for slabs. 

1 .2 3 .4 5 

Position in slab 

FIG. 7. Time-dependent diffusion of upper level population fraction as a function of time for a slab 
1200 optical depths in thickness. 
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7. SUMMARY AND CONCLUSIONS 

We have derived an implicit Monte Carlo technique applicable to two-level time- 
dependent line transport with collisions. We have demonstrated that the stability of 
the method is independent of the size of the integration time-step over a range of 
time-step sizes that span any characteristic time scale of the system. We have tested 
the accuracy of the method by comparing the asymptotic steady-state generated in 
a time-dependent problem with the solution generated with the help of a conven- 
tional steady-state method. The two methods of solution were found to be in 
excellent agreement. We have also demonstrated that the method is applicable to 
optically thin or optically thick media. The most promising applications for the 
implicit Monte Carlo line transport methods should be those that involve complex 
scattering models, multidimensional geometry, or both. 
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